A Practical View on the Computability of Real Numbers

Branimir Lambov <barnie@earthling.net>

Abstract of a Master Thesis, defended on November 8, 2001

The thesis describes an implemented system for representation and manipulation of computable real numbers; the theory behind it, the intricacies and techniques underlying its implementation, samples of its usage, and possible extensions to the system.

The second chapter in the thesis concentrates on the theory of computation on the real numbers. A generally accepted definition of computability of a real number is given; the definition requires the existence of a recursive function that computes arbitrarily close rational approximations of the given real number. The possible restriction of the definition to primitive recursive functions is discussed further. Following the proven non-equivalence of the restriction to the original definition, the text presents two other possible choices for representing computable real numbers via pairs of primitive recursive functions, the second of which is suitable for algebraic operations.

The presentation of the theory continues with the definition of a primitive recursive representation of real functions. The functions thus representable are a subset of the functions in the Type-2 Theory of Effectivity. Whether the subset is proper is a question open for further research.

The pair of definitions of primitive recursive representations of numbers and functions is then used to construct functions that evaluate the real constants π and ln 2, and the elementary functions division, square root, logarithm, exponent, and trigonometric functions. The algorithms presented are current numerical methods with logarithmic complexity.

Chapter 3 of the thesis describes the implementation of the system. It is separated in several main modules that take care of different aspects of the representation and evaluation of real numbers.

The first module, LongFloat, implements arbitrary precision floating point representation of rational numbers and several operations on them. Accent is put on efficiency via elimination of copying and unnecessary memory allocation and de-allocation.

Estimate is the second basic module that combines a rational approximation of a real number with an evaluation of the error of the approximation. A somewhat simpler representation is chosen for the error estimate to balance the efficiency of the operations over error estimates with the overheads that can be associated with inexact estimation.

The module that handles real numbers as terms that describe the procedure by which they have been obtained is implemented in the class RealObject. It stores the term in a structure similar to an expression tree, but with a few very important distinctions. The structure is similar to a tree, but actually isn’t, because of the allowed multiple inheritance of the nodes which enables the representation to fit in space proportional to the number of functions and operations applied by the user. A simple tree representation would require exponential storage. RealObject also forms the base of estimates evaluation; thanks to the effective storage and similar estimate caching strategies the procedure of evaluating a real number at a specified working precision takes time proportional to the number of functions and operations applied.

The next module handles user interface, generation of estimates, and overall control over the system. The user interface is based on operator overloading and natural operations. It is possible to substitute a given internal to the compiler numeric type with a Real and perform operations with infinite precision. Furthermore, it is possible to instantiate certain template classes (e.g. complex in STL) over Reals. This module also handles fulfilling user requests of evaluating a number to a specified precision, which is handled by gradually increasing working precision until the user requirements are met.

Several other details of the implementation are also mentioned in Chapter 3. Among these are multiplication via convolution, portability, memory management and the effect of the modular approach in the design of the system on the development and performance of possible platform-specific implementations.

The thesis then describes several sample programs that use the system and concludes by listing the points in the thesis that are open for further research and/or enhancement.

The source code of the system itself is also part of the thesis. It is written in C++ and does not require special compiler nor special set of libraries. To support the comprehensiveness of the thesis, everything mentioned in the text has been specifically coded for the system, including arbitrary precision floating point classes, special memory management, fast Fourier transformations, and elementary functions. 

